Seismic Analysis of a S-Curved Viaduct using Stick and Finite Element Models

نویسندگان

  • Sourabh Agrawal
  • Ashok K. Jain
چکیده

Stick models are widely used in studying the behaviour of straight as well as skew bridges and viaducts subjected to earthquakes while carrying out preliminary studies. The application of such models to highly curved bridges continues to pose challenging problems. A viaduct proposed in the foothills of the Himalayas in Northern India is chosen for the study. It is having 8 simply supported spans @ 30 m c/c. It is doubly curved in horizontal plane with 20 m radius. It is inclined in vertical plane as well. The superstructure consists of a box section. Three models have been used: a conventional stick model, an improved stick model and a 3D finite element model. The improved stick model is employed by making use of body constraints in order to study its capabilities. The first 8 frequencies are about 9.71% away in the latter two models. Later the difference increases to 80% in 50 mode. The viaduct was subjected to all three components of the El Centro earthquake of May 1940. The numerical integration was carried out using the HilberHughes-Taylor method as implemented in SAP2000. Axial forces and moments in the bridge piers as well as lateral displacements at the bearing levels are compared for the three models. The maximum difference in the axial forces and bending moments and displacements vary by 25% between the improved and finite element model. Whereas, the maximum difference in the axial forces, moments, and displacements in various sections vary by 35% between the improved stick model and equivalent straight stick model. The difference for torsional moment was as high as 75%. It is concluded that the stick model with body constraints to model the bearings and expansion joints is not desirable in very sharp S curved viaducts even for preliminary analysis. This model can be used only to determine first 10 frequency and mode shapes but not for member forces. A 3D finite element analysis must be carried out for meaningful results. Keywords—Bearing, body constraint, box girder, curved viaduct, expansion joint, finite element, link element, seismic, stick model, time history analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Evaluation of Curved-TADAS Damper on Seismic Response of Moment Resisting Steel Frame

In this study, the performance of triangular added damping and stiffness (TADAS) dampers combined with curved dampers (Curved-TADAS damper) is evaluated in moment resisting steel frame (MRSF). These dampers are passive and install in the beam-column connection region. Variable parameters of this study involve the width of curved damper (50, 75 and 100 mm), the thickness of TADAS damper (5 and 1...

متن کامل

Mixed finite element formulation enriched by Adomian method for vibration analysis of horizontally curved beams

Abstract: The vibration analysis of horizontally curved beams is generally led to higher order shape functions using direct finite element method, resulting in more time-consuming computation process. In this paper, the weak-form mixed finite element method was used to reduce the order of shape functions. The shape functions were first considered linear which did not provide adequate accuracy....

متن کامل

Finite Element Analysis of the Effect of Proximal Contour of Class II Composite Restorations on Stress Distribution

Introduction: The aim of this study was to evaluate the effect of proximal contour of class II composite restorations placed with straight or contoured matrix band using composite resins with different modulus of elasticity on stress distribution by finite element method. Methods: In order to evaluate the stress distribution of class II composite restorations using finite element method, upper ...

متن کامل

Improved Seismic Performance of Chevron Brace Frames Using Multi-Pipe Yield Dampers

Spacious experimental and numerical investigation has been conducted by researchers to increase the ductility and energy dissipation of concentrically braced frames. One of the most widely used strategies for increasing ductility and energy dissiption, is the use of energy-absorbing systems. In this regard, the cyclic behavior of a chevron bracing frame system equipped with multi-pipe dampers (...

متن کامل

Investigation of Nonlinear Behavior of Composite Bracing Structures with Concrete Columns and Steel Beams (RCS) Applying Finite Element Method

The composite structural system (RCS) is a new type of moment frame, which is including a combination of concrete columns (RC) and steel beams (S). These structural systems have the advantages of both concrete and steel frames [1]. In previous research on composite structures, there are some studies regarding RCS composite conections, but there is no investigation about seismic resisting system...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009